
C++ HOWTO, Republican Guide to Linux and C++ Essential Questions and
Answers

Copyright © Marcel Lambert

Republican Guide to Linux

Appendix E: Source Control Systems

Typically, when you often operate with text files that require revisions before their release or when you are
concerned with traceability of changes in your own files it is a fair indication that you might need to think
about source control system for your text files even if these files are not supposed to be used in shared mode
with other users.

Windows Linux

TortoiseSVN is the source control system
integrated with Windows Explorer, and is based
on SVN source control system earlier introduced
with Linux. SVN itself was inspired by CVS
source control system used with Unix since 1990
(and later with Linux). The advantage of
TortoiseSVN is that Windows repository created
with TortoiseSVN can be used as repository
when accessing with Linux-based client SVN
tools. This Windows/Linux interoperability
along with integration with Windows Explorer
sounded appealing for me when I opted to use
TortoiseSVN for my own projects. One other
benefit of TortoiseSVN is that it is able to
compare Word files (though not side-by-side,
v1.4.5), and works with UNICODE.

As with any source control system you should
plan a central repository. It is a good idea to
place repository on file server or use internet
server, and use shared drive if the repository
should be accessed from Windows and Linux. In
simple cases, you can choose flash drive. To
setup SVN repository after running setup
program make new folder (SVN for example),
right-click and choose Create repository here... .
If you'd try to create repository starting from not-
empty folder, the TortoiseSVN will be
complaining, which means that repository can be
created from empty folder only.

Once repository is created, you can add files (and

With Linux there are 2 major options1. The first one is
to use CVS, and the second is to rely on Subversion (or
SVN), which inherits major CVS features and claims
removing some shortcomings observed in CVS.

If circumstances do not require from you to use CVS,
the use of SVN might be a better option, especially if
you need to track versions of UNICODE files. On the
other hand the use of CVS is simpler, more intuitive,
and CVS is integrated with KDE by default through
Konqueror file manager, even though you can use a
separate UI frond-end for CVS called Cervisia
(cervisia).

Cervisia enables you to setup a CVS repository and run
basic tasks such as commit, checkout, update, adding
files, viewing version differences without running these
tasks in command-line interpreter. Sure you can use
console (konsole), but unless you use CVS everyday
keeping in mind its commands might not be a
reasonable and easy exercise (see the list of relative
commands with: # cvs --help-options or enter man:cvs
in Konqueror's address bar).

The next steps show you how to setup an empty CVS
repository from scratch so that files and folders can be
added later. It is a good idea to setup repository on file
or internet server, however, for simplicity, you can use
flash-drive for tests:

• Run Cervisia (cervisia), and create repository
cvs_repo from menu option Repository/Create...

http://netston.tripod.com/qa-cpp-howto.htm
file:///media/disk/subversion.tigris.org
http://cvshome.org/
file:///media/disk/tortoisesvn.tigris.org
http://netston.tripod.com/index.htm
http://netston.tripod.com/index.htm
http://netston.tripod.com/Windows_Linux.htm

folders) to the SVN repository. You do this with
Repo-browser, which can be invoked by right-
click on repository, choosing TortoiseSVN, and
then Repo-browser.

Now, when you need to work with repository
files locally, you first make a checkout (right-
click on repository and choose SVN Checkout...
or checkout from repo-browser). For the
destination of the local copy choose any location
such as MyDocuments/LocalSVNCopy.
TortoiseSVN enables right-click menu for the
folder where you made a checkout. The new
context-menu items are also available for local
files. Notice that TortoiseSVN adds red
exclamation mark to the left bottom of an icon of
locally edited file, and green mark if a local file
was not edited since last checkout. The same
meaning have green and red marks for folder
icons. In fact, it is convenient to identify folder
as local SVN copy by these folder marks.

Among menu items that SVN adds for locally
edited file, the most useful is Diff option, which
makes possible to see differences between local
and server (repository) versions. Don't forget to
update repo files if you make changes to the
local copy (right-click on file and choose SVN
Commit...). The accidental destruction of the
local copy can cause no harm if you did not
forget to make commits after updates of the local
files. To restore local copy you simple make a
checkout from the relative repo.

When new file is added to the repositoy, you can
load it to the local directory by right-click on
local project folder and choosing SVN Update.

If you have programming experience with
Microsoft development tools, you can jumpstart
using TortoiseSVN having in mind that mode of
operations with TortoiseSVN is based on
paradigm used with other source control systems.
Take a look on Visual Source Safe window,
which is the Windows source control system
provided by Microsoft basically for version
control of source files while programming. The
TortoiseSVN's analog of Visual Source Safe
Explorer is already mentioned Repository
Browser.

(enter an appropriate path such as
/media/disk/cvs_repo to your flash-drive). In the
result, the default structure is created under
cvs_repo folder (at this point there is only
default CSVROOT folder with CVS
administrative files, which should not be ever
edited manually).

• Create a working directory such as cvs_client
and import a project (module) you are going to
use, for example TODO (you can specify any
module name such as TODO even though it still
does not exist under cvs_client) from cvs_client
with Cervisia's Repository/Import... This step is
an equivalent of creating an new (and empty)
project in CVS repository. The fields "Vendor
Tag" and "Release Tag" do not matter in fact
albeit mandatory (CVS keeps these fields for
historical reasons, you can use company name
for "Vendor Tag" and "start", without quotes, for
"Release Tag"). Notice that under CVS a project
is called module, and modules are located
directly under repository folder (cvs_repo) that is
on the same level with default CSVROOT
folder.

• Create a working copy of TODO project
(module) by making checkout with Cervisia's
Repository/Checkout... This step includes
initializing of working copy with CVS
administrative files (folder CVS under project
name TODO of cvs_client working directory).

• At this point the repository is initialized, has
empty project (module) TODO, and also you
have its working copy (folder TODO under
cvs_client). Now you can add files to the
repository. Firstly, you simply copy necessary
files to cvs_client/TODO. Then right-click on
TODO folder and choose Open With/Cervisia.
This opens Cervisia within Konqueror file
manager. Now right-click on local file such as
TODO.txt and choose Add to Repository... You
need also make Commit... 2 in the same menu to
accomplish adding TODO.txt to the repository.

With Linux, SVN has become de-facto standard for
users and developers who want to obtain latest versions
of source code for a package to build it on local
machine albeit obtaining source with FTP is no less
practical. Frequently, a user needs a few SVN
commands such as checkout, which can be effectively
run (and bookmarked within console) from console
(konsole), without invoking UI-enabled front ends. For

this reason, I provide here in a nutshell basic steps
necessary to setup SVN repository without UI-enabled
tools (the order of steps reflects the steps with CVS
repository setup). As before you can use for tests flash-
drive:

• Create a repository such as svn_repo:

svnadmin create /media/disk/svn_repo

At this point SVN creates a structure with
administrative files.

• Create working directory, where you want to
work with local copy:

mkdir /media/disk/svn_client

Or, use Konqueror to create an empty folder
svn_client.

• Create a new project under SVN repository. This
means, like with CVS, to import an empty local
directory like svn_client. The custom name
TODO of new project is set in command line:

svn import /media/disk/svn_client
file:///media/disk/svn_repo/TODO -m
'initialization'

Notice that -m (log message), providing a
description of revision, is mandatory.

• As with CVS, at this point SVN repo is
initialized and has an empty TODO project, you
need to make a checkout to start working with
project locally:

svn checkout file:///media/disk/svn_repo
/media/disk/svn_client

This creates a local copy with .svn folder under
svn_client containing administrative files. In
general, the local folder (svn_client in the
sample) is created if it was not set in command
line.

• As with CVS you actually start working with
repository by adding and committing files. First,
add to the working directory svn_client a file, for
example TODO.txt, and add it to the repository.
Since making add does not actually adds a file
to the repository you need, in fact, execute two
commands (add and commit):

svn add
/media/disk/svn_client/todo/TODO.txt
svn commit /media/disk/svn_client -m
'commit test'

As before, -m (log message), providing a
description of an action, is mandatory.

With KDE and GNOME come KDESvn (kdesvn) and
RapidSVN (rapidsvn) programs relatively that enable
you to accomplish source control tasks within graphical
interface avoiding the use of console commands (you
still need to create repository in console when using
RapidSVN). These programs represent UI front-ends to
Subversion (SVN commands).

The sequence of steps to create a new repository and
add to it a file are the same as described when using
console:

• Create new repository: run kdesvn, go to
File/Subversion Admin and choose Create and
open new repository (uncheck Create main
folders since for simple tasks you probably don't
need standard Subversion's structure: trunk,
branches, tags).

• Create new project by adding new folder TODO
from Subversion/General/New Folder. Notice
that KDESvn hides the use of import command,
which was used with console SVN commands to
create TODO project.

• Create a local copy of new project by right-click
on TODO and making checkout to local
directory.

• Add a file to repository: make a file TODO.txt
under TODO folder of local copy, right-click on
TODO folder and choose Open With/kdesvn,
then right-click on TODO.txt file and choose
"Add selected files/dirs". As before, you still
need to Commit in the same menu to actually
add file to the repository.

The pictures used above were obtained with Cervisia
v2.4.9 and KDESvn v0.11.2 3.

1. With Fedora 7 both CVS (cvs-1.11.22-9.fc7.src.rpm) and Subversion (subversion-1.4.3-4.src.rpm)
packages are installed by default. You can verify this either by looking into install.log in ROOT
directory or running # rpm -q cvs and # rpm -q subversion (or # rpm -qi ... for more details). With Red
Hat 9 CVS is also installed by default (cvs-1.11.2-10.i386.rpm), and one can install Subversion
(subversion-0.17.1-4503.0.i386.rpm) from the CD#3.

http://rapidsvn.tigris.org/RapidSVN
http://kdesvn.alwins-world.de/

2. By default ROOT user is not allowed to commit changes in CVS. If you try, you'll have "root is not
allowed to commit files" error message. You can another account or, if you prefer to work with CVS
under ROOT, you need to recompile CVS with --enable-rootcommit switch. Here are details:

• Download latest stable CVS source from the site (it was cvs-1.11.23.tar.gz at the time of
writing).

• Copy into /usr/local, unzip and untar the source:

gzip -d '/usr/local/cvs-1.11.23.tar.gz'
tar xvf '/usr/local/cvs-1.11.23.tar'

• Compile with --enable-rootcommit option and make (/usr/local/cvs-1.11.23 must be current
directory):

./configure --enable-rootcommit
make
make install

Notice that you can check the current version with # cvs --version (1.11.23 if you did described steps).
3. Cervisia, KDESvn, Rapid SVN do not come with Fedora 7 by default (CVS v1.11.22 is installed by

default). In fact, Cervisia (cervisia) is a part of kdesdk package. To download these packages make
sure that you are connected to the internet and use yum to download and install:

yum install kdesdk
yum install kdesvn
yum install rapidsvn

http://ftp.gnu.org/non-gnu/cvs/source/stable

	Republican Guide to Linux
	Appendix E: Source Control Systems

